
SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 1 (36)

 Contract number: ITEA2 ï 10039

Safe Automotive soFtware architEcture (SAFE)

ITEA Roadmap application domains:

Major: Services, Systems & Software Creation

Minor: Society

ITEA Roadmap technology categories:

Major: Systems Engineering & Software Engineering

Minor 1: Engineering Process Support

WP4

Deliverable D 3.4.b

Guideline for description of variant management

techniques

Due date of deliverable: 30/07/2014

Actual submission date: 30/07/2014

Start date of the project: 01/07/2011 Duration: 36 months

Project coordinator name: Stefan Voget

Organization name of lead contractor for this deliverable: pure-systems GmbH

Editor: Michael Schulze

Contributors: Michael Schulze (pure-systems GmbH), Markus Oertel (Offis), Thomas Peikenkamp
(Offis), Nico Adler (FZI), Martin Hillenbrand (FZI)

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 2 (36)

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 3 (36)

Revision chart and history log

Version Date Reason

0.1 01.09.2012 Initial Draft Version 3.4a

0.2 06.02.2013 Variant management using PREEvision

0.3 07.02.2013 Variant management using pure::variants

0.4 12.02.2013 Two section added to approaches for providing variant management

0.5 19.02.2013 Draft version of motivating example

0.6 22.02.2013 Configuration Package description

0.7 25.02.2013 Application of proposed approach onto example

0.9 25.02.2013 Review version

1.0 27.02.2013 Review comments incorporated; Final version

1.1 30.07.2014 Final Version 3.4b

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 4 (36)

1 Table of contents

1 Table of contents .. 4

2 List of figures .. 5

3 Executive Summary .. 6

4 Introduction ... 7

5 Motivating Example ï Steering System .. 9

6 Approaches for providing Variant Management ... 12

6.1 Variant Information Mapping ... 12

6.2 Annotation ... 13

6.3 Asset Referencing .. 15

7 Variability Mechanisms in existing Standards ... 17

7.1 AUTOSAR .. 17

7.1.1 Variant Handling ... 17

7.1.2 Variantion Point ... 18

7.1.3 Variant Definition ... 18

7.2 EAST-ADL .. 18

8 Variability Mechanisms in existing tools ... 20

8.1 Variant management in PREEvision v5.5 ... 20

8.1.1 Structure of the variant management ... 20

8.1.2 Utilization of variant management in PREEvision ... 21

8.2 pure::variants .. 24

8.2.1 Product Line Development ... 24

8.2.2 Domain Engineering ... 25

8.2.3 Application Engineering .. 26

9 Proposed Variability Modeling Approach .. 28

9.1 General Modeling Approach ... 28

9.2 SAFE Meta Model Configuration Package ... 28

9.2.1 Restriction ... 28

9.2.2 Restrictable ... 29

9.3 Current Limitations .. 31

10 Application of Variability mechanisms to steering system .. 32

11 References ... 35

12 Acknowledgments... 36

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 5 (36)

2 List of figures

Figure 1 Overview of an electrical power steering system ... 9

Figure 2 Electrical power steering system EAST-ADL model according to architecture definition . 10

Figure 4: Relation between motor torque and time to be noticable (disturbing, uncontrollable) by
the driver ... 11

Figure 5 Modeling a variation point using the C-Preprocessor .. 12

Figure 6 Variant management information (feature FogLights) is annotated via constraints on
transitions and on the state ToggleFogLight .. 13

Figure 7 Artifacts are linked with variant management information via a referencing model. 15

Figure 8: Variant management [3] ... 20

Figure 9: Variant management structure in PREEvision [3] ... 21

Figure 10: Variant perspective ... 22

Figure 11: Example for using variant management in PREEvision .. 22

Figure 12 pure::variants' terminology .. 25

Figure 13 Relations and data flow during transformation ... 27

Figure 14 Safe Meta Model Configuration Package .. 29

Figure 15: Classification of the Controllability .. 33

Figure 16 Hazard analysis containing variability .. 34

file:///C:/Users/michael_w/PS/Projects/SAFE/SAFE-extern/33_WP3_Model_Based_Development/WT3_4_Variant_Management/Deliverables/Safe_D3.4.b.doc%23_Toc394473453
file:///C:/Users/michael_w/PS/Projects/SAFE/SAFE-extern/33_WP3_Model_Based_Development/WT3_4_Variant_Management/Deliverables/Safe_D3.4.b.doc%23_Toc394473454
file:///C:/Users/michael_w/PS/Projects/SAFE/SAFE-extern/33_WP3_Model_Based_Development/WT3_4_Variant_Management/Deliverables/Safe_D3.4.b.doc%23_Toc394473454
file:///C:/Users/michael_w/PS/Projects/SAFE/SAFE-extern/33_WP3_Model_Based_Development/WT3_4_Variant_Management/Deliverables/Safe_D3.4.b.doc%23_Toc394473455
file:///C:/Users/michael_w/PS/Projects/SAFE/SAFE-extern/33_WP3_Model_Based_Development/WT3_4_Variant_Management/Deliverables/Safe_D3.4.b.doc%23_Toc394473460
file:///C:/Users/michael_w/PS/Projects/SAFE/SAFE-extern/33_WP3_Model_Based_Development/WT3_4_Variant_Management/Deliverables/Safe_D3.4.b.doc%23_Toc394473461
file:///C:/Users/michael_w/PS/Projects/SAFE/SAFE-extern/33_WP3_Model_Based_Development/WT3_4_Variant_Management/Deliverables/Safe_D3.4.b.doc%23_Toc394473462
file:///C:/Users/michael_w/PS/Projects/SAFE/SAFE-extern/33_WP3_Model_Based_Development/WT3_4_Variant_Management/Deliverables/Safe_D3.4.b.doc%23_Toc394473464

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 6 (36)

3 Executive Summary

The deliverable is targeted to develop and to describe variant management concepts suitable for
using it in the development of safety critical systems. Starting with an analysis of variant
management mechanisms in standards as AUTOSAR and EAST-ADL as well as a presentation of
different variant management approaches and tools, the variant management concept for the
SAFE meta model is presented. Subsequently, the usage of the mechanisms is shown in an
example.

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 7 (36)

4 Introduction

Traditional product development creates multiple products overtime, often by using reuse
strategies like ñClone and Ownò. ñClone and Ownò means new projects start by copying/branching
most/all of an existing product and start their development from there. It is cheap in the beginning
but eventually cost is not much lesser (or even higher) than for an approach not trying to reuse by
copying. One of the reasons for this reuse ñinefficiencyò is that effort for activities like testing,
maintenance, and certification (e.g. safety analysis, function and technical safety concept) does
not reduce significantly by copying the assets, as they have to be carried out for each for the
clones individually.

Especially in development processes driven by the ISO 26262 it is not possible to assemble a
product by copying since the safety activities start with a hazard analysis based on the intended
use. The traceability and requirements coverage from the initial hazard analysis to the various
safety concepts to the final development of hardware and software components need to be fully
established. To support variable design with safety constraints integrated measures are needed
from the beginning. Of course, the scope of the hazard analysis could be extended to fit all
possible use cases for all variants, resulting in an extremely expensive development, leading the
idea of system re-use ad absurdum. If it is intended to use an item as a base-design for a product
family, the possible effect of design variations to the safety activities need to be stated while
performing the different verification and validation activities and safety analysis activities, to allow
an exact determination of the influence in other variants.

Another often seen approach for new products is combining functionality from different
versions/branches of the system in an unmanaged ad-hoc kind which sometimes takes more time
than developing them from scratch (which is what developers will do after a few failed attempts to
reuse by merging) leading to same drawbacks as mentioned before.

To tackle the reuse inefficiency problem, first it is needed to separate changes over time (aka
versions/evolution) from combining functionality into products (aka variants) and treat version
management and variant management as different disciplines from which both are necessary.
Second, a product line approach shall be applied where common shareable assets and variability-
containing adaptable assets forming the base of all products often also termed as platform.
Changes on that platform in order to support a new product have to be done in a way that already
existing products can be created from the same asset versions. Maintaining such flexible 150%
solutions, from which a number of products each of them a 100% solution can be derived, over
time, is much simpler than later trying to merge fixes across the different version of the assets
used to build the individual products. For sure, some of the variants might get irrelevant over time,
so caring for them is stopped eventually.

At the moment we have not defined what we understand under variability. In [3] the term software
variability is specified, however, we do not just consider software but also other artifacts and as
such we define variability following the definition in [3] but in a more general and broader sense:
Variability describes the ability of an artifact or of a system to be used in different contexts by
changing or customizing some characteristics of it. Those changeable characteristics are
somewhere located within the artifacts and a notion that is usually used in all product line/variant
management approaches is the term variation point. Variation points identify all places where
members of a product line may differ from each other. Such difference may be the existence of
certain model elements (optional or alternative artifacts) or parameters. A variation point describes
all possible instantiations available at this point. Usually there are some conventions or even
specific formal ways to express variation points. Furthermore, a variation point may have
constraints, describing dependencies between instances of the variation point and to other
variation points. They usually have a binding time such as compile time, link time or run time, at
which the variation point instances have to be selected (the decision has to made).

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 8 (36)

To sum it up variation points describe where variations occur, what the choices are and how these
variations are related to each other and very important is also that variation points in the different
space (problem space and solution space) are connected to each other.

The aim of variant management capabilities in the context of safety related artifacts is to enable
modeling and specifying variable elements or parts of such artifacts. That means with the
proposed SAFE Meta Model Configuration Package it is possible to describe at which locations
variability exists and under which conditions what variation can be applied. It is the intention of the
task to go forward from system design variability to safety related variability. The influence of
different configurations on the HARA shall be expressible.

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 9 (36)

5 Motivating Example ï Steering System

An electric power steering system is used to demonstrate our variability approach, since different
car variants (small vs. big, compact vs. luxury) usually have different incarnations of an EPS
because of the varying characteristics of the cars. The steering system of a car provides the
functionality of moving the car in the direction the driver desires by converting the applied
rotational movement into a modification of the steering angle. Moreover, the driver gets feedback
about the road surface and the current situation. In general, the following requirements and
interactions with the environment hold for steering systems:

¶ the required operating force should be as low as possible and adapted to the current
driving conditions,

¶ the number of rotations from one mechanical stop to the opposite mechanical stop shall
be as small as possible,

¶ the conversion of the rotational movement to the steering angle needs to be precise and
free from float,

¶ in case the vehicle is moving and the steering wheel is not touched by the driver, the
steering wheel shall go back in the position of driving straight ahead automatically,

¶ the feedback from the road condition needs to be recognizable but shall not be
disturbing,

¶ the legal regulations concerning the maximum operating force as well as the operating
time shall be considered.

In particular the requirements concerning the operating force lead to the fact that in modern cars
the steering action of the driver is usually supported by adding torque to the steering link and
therefore reducing the effort the driver has to spend for steering the car. Within this section the
example of an electric power steering, one particular form of those auxiliary systems, will be used
to illustrate the developed concepts. In Figure 1, an overview on such a system is given.

Figure 1 Overview of an electrical power steering system

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 10 (36)

In general, electric power steering systems (see Figure 1) work according to the following
functional principle: The rotational movement of the steering wheel is detected by a torque sensor
which passes the value to an electronic control unit (ECU). Within the ECU, the needed supporting
torque which needs to be provided by an electric motor is calculated based on the received data
and under consideration of other values, like, for instance, the current velocity. The electric motor
is actuated by a power amplifier and passes the torque to the steering system via gears.

As a result of the item definition we obtain architecture ï represented by an EAST-ADL model ï
that shows the item, its boundaries, and how it is embedded in the overall system consisting of the
vehicle including other items and elements, the environment, and the driver and other traffic
participants. The main structure of this model is depicted in Figure 2.

Figure 2 Electrical power steering system EAST -ADL model according to architecture

definition

The hazard identified in this scenario is unintended established torque in a situation where no
torque is requested:

Context: Velocity larger than 50km/h and curvature equal straight

Hazard: Within time interval of length 100ms the torque exceeds MaxTorque(x) for duration
greater than or equal to x.

MaxTorque(x) expresses the maximum tolerable torque during the timeframe of 100ms.

In Figure 3 the duration for an undesired torque is depicted classified by user experiments into the
categories recognizable, disturbing and uncontrollable.

This figure is drawn independently of a particular technical solution. Thinking about variable
system design it is very likely that only parts of this figure might be interesting for concrete
solution. Therefore the hazard and risk analysis might differ from one variant to another.

In the following sections we present an approach of how to integrate safety related properties in a
variable system design.

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 11 (36)

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700

m
o
to

r
to

rq
u

e
 (

st
e
e
ri
n

g
 s

u
p

p
o
rt

)
[N

m
]

pulse duration [ms]

Recognizable

Disturbing

Uncontrollable

Figure 3: Relation between motor torque and time to be noticable (disturbing,

uncontrollable) by the driver

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 12 (36)

6 Approache s for providing Variant Management

In this section we describe how abstract variant management information from the problem
domain (e.g. variant knowledge captured and managed with feature models) can be connected
with artifacts or elements that implement the solution (solution domain). In general, three different
approaches are possible and depending on the given artifact language or tool the suitable has to
be chosen:

¶ Variant Information Mapping

¶ Annotation

¶ Asset Referencing

If the used language or tool does not support at least one of the above alternatives variant
management will not be possible for those artifacts. In the following we explain the three
approaches in detail.

6.1 Variant Information Mapping

The variant information mapping approach is applicable for languages or tools or generally
speaking for those Meta Models having some kind of support for variant handling mechanisms.
That means, in the Meta Model in question it is possible to model variation points and furthermore
to describe conditions that, if being evaluated, lead to one or the other instantiation realizing a
specific variant at the end. The tools that implement the respective Meta Model are then able to
perform the transition from such variant-rich artifacts to variant-specific artifacts through binding
variation points by resolving the particular conditions and selecting the necessary parts and
removing the irrelevant ones.

As an example for such language and also for a tool, in Figure 4 the C-Preprocessor (cpp)
language is used to model a variation point in the source code by framing some part of the code
with #ifdef and #endif statements. Depending on the value of the FLAG_A the source code
between the preprocessor statements is contained in the preprocessed file that is given to the
compiler for further processing. That means, to create the demanded variant the cpp needs to be
provided with the right values for all to be evaluated #if statements.

Until now we just described the solution side and how the variation points are modeled and
bound/resolved there. The connection to the problem space is still missing. As mentioned, to be
able to create the needed variants on the solution side the values of the FLAGs have to be known
by the cpp. That means the abstract variant management information for example features has to
be linked on one side with FLAGs and on the other side with the respective values for the FLAGs.
This information is usually part of a model managed by a variant management tool which might be
able to generate for example a file like defines.h (see Figure 4) from it. Another way to provide the

ʢÉÎÃÌÕÄÅ ƧÄÅÆÉÎÅÓƚÈƧ

ƛ

#ifdef FLAG_A == 1

// variant specific code

ƛ

#endif

ƛ

Figure 4 Modeling a variation point using t he C-Preprocessor

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 13 (36)

FLAGs and their values to the cpp would be to give them as additional command line parameters
or to create a specific Makefile or build script that steers the compilation as a whole. By using this
approach conditional file inclusion may be realized too.

The variant information mapping approach using the C-preprocessor is applicable for all text
based languages like C/C++, Java, etc. and also for all text based files in general because the cpp
is just a simple text replacement tool. Nevertheless, the variant information mapping approach is
not just useful there and consequently there exist other languages that support also variant
handling mechanisms like AUTOSAR 4.0, Matlab/Simulink, where the same approach is
applicable.

6.2 Annotation

If the artifactôs language does not provide basic means for the description of variation points by
itself another approach needs to be taken to support variability on the artifacts level. The
annotation approach is being useable if the underlying artifactôs meta model has either an
extensible data model or provides on artifact level a free data space for tool specific data. UML
goes to the first category because with so-called profiles additional elements are definable e.g. a
specific variant information constraint might be specified that can be put on arbitrary model
elements (see Figure 5). An example for the second category is AUTOSAR even for releases prior
to 4.0 since each AUTOSAR model element has a data member called ñADMIN-DATAò where

Figure 5 Variant management information (feature FogLights) is annot ated via

constraints on transitions and on the state ToggleFogLight

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 14 (36)

tools may store additional tool specific information in so-called special data groups (SDGs).

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 15 (36)

Depending on the respective language variant management information like features are
annotated in such additional data fields denoting usually the existence condition of the artifacts. As
those languages themselves do not know anything about the concept of variability at least two
actions have to be carried out by the variant management to materialize specific variants:

¶ Resolve the variability of the enriched artifacts by binding variation points with variations

¶ Create variant specific artifacts by transforming the 150% model into a 100% model

o Done by the variant management itself meaning the knowledge of the relevant parts
of the respective meta model has to exist

o Done by a specific modeling tool under guidance of the variant management

An advantage of this approach is that no additional models as for the variant information mapping
approach are needed and the relevant variant information like the restrictions is stored together
with the affected artifacts. Nevertheless, since the considered language and also corresponding
tools are unaware of that information and as such losing this information is possible if not being
worked carefully.

6.3 Asset Referencing

The asset referencing approach is the third possible approach for linking variant information from
the problem domain with artifact from the solution domain. In contrast to the annotation approach
the conditions e.g. for the existence of artifacts is not stored in the artifacts itself within the artifacts
model but instead in an additional model called the referencing model (see Figure 6). This is
usually due to the fact that the solution domain model does not support embedding additional
information on artifacts, meaning the data model is not extensible.

The statements according to the actions a variant management suite has to perform are the same
as for the annotation approach since both are very similar from the variant management
perspective except the fact where the variant information e.g. conditions are stored. The downside
in contrast to the annotation approach is that an additional model is necessary that has its own life

Figure 6 Artifacts are linked with variant ma nagement information via a

referencing model.

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 16 (36)

cycle and evolution speed, meaning one has to ensure that the information are in line or
synchronized between the related models.

An example where the referencing approach is used for the variant management is EAST-ADL. A
second example is pure::variants with its generic variant management support for EMF ecore
models where the low level identifiers of ecore model element representations are liked with
features to enable variability modeling for arbitrary EMF artifacts.

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 17 (36)

7 Variability Mechanisms in existing Standards

In the following section we will discuss the variability mechanisms that are provided by existing
standards. We show what is supported each time and how it works. As relevant standards for the
automotive industry and as such for the SAFE project, we concentrate on AUTOSAR as well as on
EAST-ADL.

7.1 AUTOSAR

With the advent of AUTOSAR in 2002 and with its first release in 2005, it became the de-facto
standard for the automotive electric/electronic architecture and system design. Since that time, the
standard has further developed and made major progress. Currently, the latest AUTOSAR release
is release number 4.0 from 2009 with some later maintenance releases. However until today, the
industry does not fully switched to that release and thus former releases are often applied, mostly
having a 3 as major release number.

Considering the challenge of variability, we have to answer the following question:

¶ Does the high-level abstraction of AUTOSAR supports modeling of variability. If not, are there
any other ways to enable support for variability, in general?

Answering the question is not a clear yes because it depends on the AUTOSAR release, whether
support for modeling variability exists or not. All releases prior to AUTOSAR 4.0 do not know a
notion of variability but since release 4.0, variability may be expressed [1]. Due to still strong
adherence to AUTOSAR release 3.x of some automotive OEM the question arises: Can variability
be supported in those releases? Likely, because the AUTOSAR meta model permits providing
additional information on model elements by using so called admin-data. This way, tool specific
data, for example for modeling variability, can be integrated using the annotation approach.
Another way could be using the asset referencing approach.

One remains still to answer regarding variability modeling in AUTOSAR release 4.0, is variant
handling or also variant management supported? The AUTOSAR meta model supports just variant
handling, meaning to express that a model element is subject to variability. However, it is not
possible to specify or to define dependencies between thus labeled elements. Variant
management was not in the scope of the development of the AUTOSAR release 4.0. That implies
variant management has to be carried out without AUTOSAR meta model support. Usually,
external tools for variant management are used like pure::variants [2].

The following description of variant handling mechanisms applies only for AUTOSAR release 4.0
and later releases.

7.1.1 Variant Handling

¶ Only Variant Handling no Management

¶ Just selection and parameterization

ï Existence of model elements (aggregation, association)

ï Parameterization (attribute value, property set)

ï Relations between elements according to variability cannot be modeled

¶ Where:

ï Not every element is subject to variation

ï Meta Model defines locations by <<atpVariation>> annotations

¶ When:

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 18 (36)

ï dependent on variability kind (aggregation, association, é)

ï All relevant automotive binding times (from system design till to start up time)

7.1.2 Variantion Point

¶ Variation Point mechanism

ï just for structural variability

ï PreBuild

Å Different binding times

Å Condition based on swSystemconst

Å Single condition

ï PostBuild

Å Explicitly not run-time but start-up time

Å comparison of values and their PostBuildVariantCriterium

ï PreBuild and PostBuild, even together

¶ Modeling is not uniform

ï E.g. Attribute values are treated differently

7.1.3 Variant Definition

¶ Based on SwSystemConst

¶ Hierarchical definition

ï 0-n EvaluatedVariantsets

Å 0-n PredefinedVariants

ï 0-n SwSystemconstValueSets

» 0-n SwSystemconstValues

¶ Potential problems

ï Non disjoint sets on any hierarchical level

Å Needs to be ensured by tools

Å Merging difficult due to possible conflicting values

Å Problem detectable by means of model checking

Å Stated in the standard as additional constraint that tools have to be fulfilled

ï Referencing system constants that itself are subject to variation

7.2 EAST-ADL

Å Variant Handling and Management

Å Variant Handling

ï Basis Concept: Variation Point

ï VariableElement and VariationGroup

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 19 (36)

ï Each element may be subject to variation

Å Variant Management

ï Vehicle Feature Modeling

ï (hierarchical) Feature Modeling

ï DecisionModel

Å Problem:

ï No element(s) for representing a variant ï Question: How is a variant defined?

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 20 (36)

8 Variability Mechanisms in existing tools

8.1 Variant management in PREEvision v5.5

PREEvision provides concepts for product line and variant management [3]. Variant management

in the tool environment facilitates to handle different products in a Product Line, as shown in

Figure 7. A Product Line of an electric and electronic architecture is modeled as so called 150%-

model. This model includes all information about Product A, Product B and Product C in a single

consistent model. Using the integrated variant management the different products can be tailored

into different subsets.

Figure 7: Variant management [3]

8.1.1 Structure of the variant management

The structure of the variant management is shown in Figure 8. Artifacts of all abstractions layers

can be used for the variant management. The structure of the variant model provides a Concept

Space , which includes Architecture Variants , Concept Templates and Alternatives. Additionally,

Equipment Template s including Alternatives and Sets are available. These are described in
detail in the following.

Concept Space :

The Concept Space is a kind of design space to bundle possible variants of architectures.
A Concept Space can represent a vehicle with all points of variants. It represents the basis
to create architecture variants.

The Concept Template describes all possible implementations of a certain assembly of the
vehicle and is directly associated with a Concept Space. This constitutes a technical partial
solution. The Concept Template holds the assigned Alternatives and let the user specify
exactly one Alternative for one Concept Template.

An Architecture Variant is one specific variant related to exactly one Equipment Template
Alternative.and can be described by one or more technical implementation concepts. The
sum of the chosen Concept- and Equipment Template Alternatives results in one concept
implementation variant of the according Concept Space. It is possible to create various
Architecture Variants to structure variants in a well arranged way.

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 21 (36)

Figure 8: Variant management structure in PREEvision [3]

Equipment Template :

The Equipment Template describes equipment characteristics from the customer point of
view. It holds Alternatives and let the user chose exactly one of them for one Architecture
Variant.

Set:

Sets are basic structure elements and artifacts of the abstraction layers can be grouped.
They are highly reusable and therefore a good granularity has to be found in order to use
them in multiple templates [3].

Alternative :

Alternatives can be used in Concept Templates and Equipment Templates. The Concept
Template Alternative represents one specific technical solution for a Concept Template.
The Equipment Template Alternative represents the available vehicle configurations.
Exactly one Alternative can be specified to a Template.

8.1.2 Utilization of variant management in PREEvision

8.1.2.1 Configuration with variant perspective view in PREEvision

Figure 9 shows the variant management using the corresponding variant management perspective

of PREEvision . The selection of an active variant using the scrollbar facilitates that all

assigned artifacts will be shown in the model view , all other artifacts will be faded out. Using
the variant management perspective the user can create or configure architecture variants of the

different concept spaces . In addition the user can edit Sets or assign them to Templates .

SAFE ï an ITEA2 project D3.4.b

â 2011 The SAFE Consortium 22 (36)

Figure 9: Variant perspective

8.1.2.2 Example for usage

Figure 10 shows a simple example of a front-light system. There are two possibilities: ñLED-Lightò
and ñXENON-Lightò. The Sets (1 and 2) include the artifacts of the different light-systems. These
two Alternatives are assigned to the Concept Template named ñLightò. Therefore the Architecture
Variant ñVehicleComfortò, shown in Figure 10 with red frame, can be varied according to the
different Alternatives of the Concept Template.

Figure 10: Example for using variant management in PREEvision

